Patterns of Plant Biodiversity along Elevation in the Organ Mountains, NM ^{1,4} mmarisa@nmsu.edu y @grassbotany, https://marisamancillas.github.io , ^{2,4} prihodko@nmsu.edu y @ SavannaLab_NMSU , ^{3,4} <u>sfuensor@nmsu.edu</u> y @NMSU_Herbarium ⁴ Department of Animal and Range Sciences, New Mexico State University Las Cruces, NM, 88003 ## **Introduction** Arid Sky Islands— such as the Organ Mountains of southern NM— are model systems for understanding the impacts of climate change on biological communities¹. The Organ Mountains' harsh elevation gradient (1,189 – 2,738 m) enables real-time interpretation of species' responds to changes because elevation serves as a proxy for moisture, weather, and climate(Fig. 1). Understanding these processes is critical for ecosystem management, nevertheless, very little is known about individual species response to climate change in New Mexico and arid regions globally³. In this study, we leverage 178 years of biodiversity data in the context of the Organs' unique physical geography to understand the relationship between weather, climate, and plant species distribution, abundance, and biodiversity. # **Objectives** - 1) To synthesize biodiversity occurrence data from 1848-2021 in the Organ Mountains - 2) Analyze relationship between species richness, abundance, diversity, and landscape position (e.g., elevation, slope, aspect) Figure 1. Terrain map of the Organ Mountains and inset of the study site within New Mexico. Sources: OpenStreetMap, Stamen Map, Google 2020. #### **Compilation of Biodiversity Data** We reviewed historical references from 1890 – 2020 from the NMSU Branson Library Archives and Special Collections, Google Scholar, and agency monitoring data. Additionally, we harmonized occurrence data from four biodiversity repositories – which each query up to 199 institutions – and two herbaria. We determined the temporal scope of our historical review to start in 1848 with the first specimen collections made in the Organs marking the introduction of western science and taxonomy to the region (Fig. 2). **Figure 2.** Timeline of biodiversity data types from historical review that were processed into occurrence data. # **Harmonizing Species Occurrence Data** **Figure 3.** Diagram of data harmonizing process. A) Image of a specimen from the organ Mountains demonstrating how specimen collections represent species occurrence data documenting the time location and identity of a sample. B) Diagram of workflow for processing occurrence data from multiple institutions. Biodiversity Repositories queried were Arctos, Consortia of Regional Intermountain herbaria, SEINet, and Global Biodiversity Information Facility. Smithsonian and New Mexico State University (NMC-NMCR) herbaria were also incorporated. ## **Historical Biodiversity Literature** | Time Period | Order | Family | Genus | Species | Infraspecific Epithet | |-------------|-------|--------|-------|---------|-----------------------| | 1848 - 1920 | 39 | 99 | 374 | 861 | 186 | | 1921 - 1960 | 34 | 77 | 247 | 450 | 97 | | 1961 - 2000 | 47 | 125 | 446 | 1011 | 158 | | 2001 - 2021 | 37 | 90 | 329 | 566 | 72 | | Total | 157 | 391 | 1396 | 2888 | 513 | **Figure 3.** Table of plant species occurrence records by time period and taxonomic rank showing increases in our understanding of biodiversity over time. #### **Ecological Monitoring Data** We included ecological monitoring data from the Bureau of Land Management Assessment (BLM) Inventory and Monitoring program and collected additional plots in high elevation areas (Fig. 4). Figure 4. Elements contributed to this project by the Assessment Inventory Monitoring methods – species richness, ecosystem structure, and species' relative abundance. A. Map of AIM and Diversity plots in the Organ Mountains including additional plots from this project (in yellow). B. Illustration of a transect measuring canopy gap. C. Diagram of plot layout. Results Best Represented Lineages Figure 5. Plant Community phylogenetics of Angiosperms and gymnosperms in the Organ Mountains (right panel). A. List of best (blue box) and least (orange box) represented lineages in the Organs. B. List of species richness per order. **Figure 6.** Heat map of the Organ Mountains showing the relationship between elevation and species observed richness. High values for species richness may be biased by sampling effort. | Elevation | | | | | | |-----------|----------|---------|---------|-------------|--------| | (m) | Richness | Shannon | Simpson | Inv.Simpson | n | | 1300 | 686 | 6.33 | 0.0017 | 583.632 | 2602 | | 1400 | 2005 | 7.04 | 0.0012 | 816.048 | 26743 | | 1500 | 2119 | 6.62 | 0.0021 | 482.899 | 69591 | | 1600 | 1613 | 6.93 | 0.0013 | 767.887 | 13683 | | 1700 | 2314 | 7.32 | 0.0008 | 1189.743 | 20802 | | 1800 | 2182 | 6.83 | 0.002 | 497.822 | 27092 | | 1900 | 1270 | 6.83 | 0.0012 | 820.497 | 6786 | | 2000 | 406 | 5.55 | 0.0056 | 177.783 | 1316 | | 2100 | 450 | 5.84 | 0.0029 | 340.292 | 1296 | | 2200 | 211 | 4.42 | 0.0182 | 55.076 | 1033 | | 2300 | 190 | 4.88 | 0.0091 | 110.242 | 412 | | 2400 | 952 | 5.93 | 0.005 | 200.786 | 5956 | | 2500 | 60 | 3.98 | 0.0105 | 95.357 | 90 | | 2600 | 112 | 4.62 | 0.0057 | 176.029 | 190 | | 2700 | 19 | 2.91 | 0.0095 | 105 | 21 | | Total | 14589 | 86.03 | 0.0768 | 6419.093 | 177613 | **Figure 7.** Table of biodiversity metrics Species Richness, Shannon, Simpson, and Inverse Simpson index as well as the number of overall occurrence records for each 100m elevation band. **Figure 8.** Linear regression of biodiversity metrics with respect to elevation. A Total species observed per sample. B Shannon's diversity index showing the highest species diversity between 1400m – 1800m. C Simpson index demonstrating that plant community evenness increases with elevation. D Inverse Simpson index showing same pattern with actual counts. ## **Conclusions and Future Directions** Synthesis of biodiversity data through time is an essential step towards understanding species response to land use and climate change. With more exploration of these data, we aim to detect changes in abundance of climate generalist and climate-sensitive species along elevation. #### **Implications** - Identify fast-adapting species for restoration, translocation, and targeted demographic studies - Identified local extirpations, new invasions, sensitive taxa, and threatened populations - Protection of ecological, socio-ecological, and tourism-related resources - Supply models for plant community response to climate change in arid systems - Provide proof of concept for a long-term ecological monitoring of the Organ Mountains #### References for monitoring. Ecosystem Health and Sustainability 3:3, DOI: 10.1002/ehs2.1264 1McCormack, J. E., H. Huang, L.L. Knowles, B.G. Freeman, J.A. Lee-Yaw, J.M. Sunday, & A.L. Hargreaves. 2018. Expanding, shifting and shrinking: The impact of global warming on species' elevational distributions. Glob. Ecol. Biogeogr. 27, 1268–1276. https://doi.org/10.1111/geb.12774 2Gillespie, R. & D. Clague. 2009. Sky islands. Encyclopedia of islands 4, 841-843. 3Mccollum, D.W., J.A. Tanaka, J.A. Morgan, J.E. Mitchell, W.E. Fox, K.A. Maczko, L. Hidinger, C.S. Duke # Acknowledgements & U.P. Kreuter. 2017. Climate change effects on rangelands and rangeland management: affirming the need Undergraduate assistants: Mia Herrera, Justin Lopez, Charlene Juanico, Joshua Martinez. USDA NIFA ENHANCEMENT Enhancing Hispanic Access to Natural Resource and Agricultural Careers through Education, Mentorship, and Training, NMSU Herbaria Team, Bureau of Land Management.